RoboCupRescue Robot League

2024 Championship, Eindhoven, Netherlands

Trustees

Raymond Sheh, Australia (2021-2024)
Jackrit Suthakorn (2016-2021)
Adam Jacoff (2009-2015)*
Satoshi Tadokoro (2002-2008)*

Executive Committee

Stefan May, Germany
Noritaka Sato, Japan
Ann Virts, USA
Tetsuya Kimura, Japan
Sören Schwertfeger, China
Jafar Chegini, Iran
Johannes Pellenz, Germany
Raymond Sheh, Australia
Gerald Steinbauer, Austria
Ehsan Mihankhah Iran/Thailand
Andreas Birk, Germany
Claude Sammut, Australia
Adam Jacoff, USA*
Satoshi Tadokoro, Japan*

* Co-Founders

Technical Committee

Martin Oehler, Germany
Archer Losely, USA
Shotaro Kojima, Japan
Emilo Platt, Mexico
Tom Haus, USA

Organizing Committee

Adam Jacoff, USA*
Johannes Pellenz, Germany
\qquad (Local Chair)

League Objectives
Emergency responders need robots with assistive/autonomous capabilities to perform extremely hazardous tasks in complex environments from safe standoff distances.

RoboCupRescue

provides a tangible language between emergency responders and researchers/manufacturers to refine, measure, and highlight breakthrough robotic capabilities.

- Established just before the World Trade Center collapse in New York City more than 20 years ago, where robots were deployed but didn't do so well (understandably). But there are partial collapses to deal with much more often.
- Gather teams of researchers capable of developing robotic systems that enable emergency responders to perform extremely hazardous tasks from safer stand-off distances.
- Demonstrate and improve upon the sate-of-the-science in robotics for unstructured environments, with an emphasis on developing autonomous and assistive capabilities that make remotely operated robots more capable and reliable.
- Develop and disseminate the standard test methods emergency responders use to
- Objectively evaluate commercial robots
- Train with objective measures of remote operator proficiency
- Credential robot operators for hazardous missions
- It is a long process to harden and commercialize your robots, but this is the essential first step out of the laboratory toward making a difference for those in harm's way.

RoboCupRescue Championships
2024 Eindhoven, Netherlands
2023 Bordeaux, France
2022 Bangkok, Thailand
2021 Distributed/Remote
2020 Cancelled (Pandemic)
2019 Sydney, Australia
2018 Montreal, Canada
2017 Nagoya, Japan
2016 Leipzig, Germany
2015 Hefei, China
2014 Joao Pessoa, Brazil
2013 Eindhoven, Netherlands
2012 Mexico City, Mexico
2011 Istanbul, Turkey
2010 Singapore, Singapore
2009 Graz, Austria
2008 Suzhou, China
2007 Atlanta, USA
2006 Bremen, Germany
2005 Osaka, Japan
2004 Lisbon, Portugal
2003 Padua, Italy
2002 Fukuoka, Japan
2001 Seattle, USA
2000 AAAI Conf, Austin, TX

RoboCupRescue conducts comprehensive evaluations involving essential mission tasks required by emergency responders worldwide. The arena includes a variety of reproducible terrains, obstacles, and tasks with increasing difficulty to challenge even the most capable robots. Same tests used for commercial robots.

- Ground robots range from small throwable to rather huge.
- Note the new (largest) class of firefighting robots remotely spraying water on a fire.
- All need to be evaluated similarly.

RoboCupRescue Robots can have similar designs - success is often imitated. Or they can be very different. All need to be evaluated, compared, and differentiated based on statistically significant capabilities data.

Unitree Go1
Max Height : 29 cm (12 in) Weight: 12 kg (26 lbs) Max Step : 10 cm (4 in)
Max Incline: ± 21 degrees

Unitree Aliengo
Max Height: 60 cm (24 in)
Weight: 21 kg (47 lbs)
Max Step : 12 cm (4.7 in)
Max Incline: ± 25 degrees

Boston Dynamics Spot Max Height : 70 cm (28 in) Weight : 32 kg (72 lbs) Max Step : 30 cm (12 in)
Max Incline : ± 30 degrees

Unitree B1
Max Height : 64 cm (25 in) Weight : 50 kg (110 lbs) Max Step : 20 cm (8 in) Max Incline : ± 30 degrees

Ghost Robotics Vision 60 Max Height : 76 cm (30 in) Weight : 51 kg (112 lbs) Max Step: __cm (_ in) Max Incline : $\pm \ldots$ degrees

Champion and Best－in－Class Autonomy：Team KAIST（South Korea）

FINAL 5－LANE SEQUENCE（10 MINUTE TIME LIMIT） All 5 Lanes in Both Directions $=80 \mathrm{~m}(260 \mathrm{ft})$

Champion and Best-in-Class Autonomy: Team KAIST (South Korea)

FINAL 5-LANE SEQUENCE (10 MINUTE TIME LIMIT) All 5 Lanes in Both Directions $=80 \mathrm{~m}(260 \mathrm{ft})$

example of their path planning through a sequence of zig-Zag lanes

Champion and Best－in－Class Autonomy：Team KAIST（South Korea）

FINAL 5－LANE SEQUENCE（10 MINUTE TIME LIMIT） All 5 Lanes in Both Directions $=80 \mathrm{~m}(260 \mathrm{ft})$

NEW CRATE STEPFIELD (WITH DEXTERITY TESTS) STEP HEIGHTS SET TO 30 cm (12 in)

Choose the Scale that Matches the Intended Environment

60 cm (24 in) lateral clearance guaranteed. Environments like dwellings, trains, busses, planes, or between parked cars, etc.

Choose the Scale that Matches the Intended Environment

30 cm （12 in）lateral clearance guaranteed．
Small throwable robots，potentially disposable，are deployed through access holes into large scale tests．
Emphasis on 3D printed robots with effective designs that can be readily disseminated or improved．
 Rescue

League Emphasis

Maneuvering (MAN) refers to terrains that can typically be driven FORWARD and REVERSE to demonstrate bi-directional situational awareness, fine motor control, precise steering, etc.

Mobility (MOB) refers to terrains and obstacles that are typically too difficult to mandate a particular driving direction. These are reproducible tests abstracted from real-world situations that robots need to perform in emergency response operations.

Dexterity (DEX) refers to manipulator tasks embedded within the various terrains and obstacles. They include some standard tests that are easy for everyone to replicate and compare performance along with other tasks that are more operationally relevant and variable. They are on linear rails to evaluate manipulator reach and omni directional objects to evaluate orientational dexterity.

Exploration (EXP) refers to autonomous maneuvering tasks within complex terrains to generate 2D and 3D maps of the environment while identifying objects of interest. The resulting maps are scored for accuracy and quality as if they were about to be handed to an emergency responder for immediate use.

Evaluate and Compare

- The main objective for teams is to challenge and learn about their robotic system capabilities while refining their approaches.
- Teams learn what it will take for their robots to succeed.
- The best scoring teams can win awards to recognize their accomplishments.

Resilience to Failure

- Robot resets are allowed during trials to ensure some level of measurable success.
- The operator or team member with the best view should declare a reset.
- A 2-minute penalty allows the robot to be safely reset at the start of the terrain or obstacle in which it failed. The trial continues after the penalty time has elapsed.

Inclusiveness

- Teams get as many trials as possible within the time available, so they can rigorously evaluate their robots in support of their research objectives.
- Teams schedule their own test plan each day to manage their own risks.

Hundreds of Test Trials to Conduct

- RoboCupRescue hosts astonishingly productive public evaluations with massively concurrent Preliminary trials across 10 individual test lanes.
- Teams proctor and score other team trails to practice conducting tests for their own team at home.
- Teams choose which tests they focus on to support their research goals.
- Teams participate during most days until the best teams conduct more difficult combined sequences of tests.

Lane Difficulty Settings

- Enable incremental challenges for robots with various capabilities.
- League organizers can set the level of difficulty to provide challenges just beyond the participating robot capabilities to measure the resulting behaviors and reliability.
- When the apparatus difficulty setting is the same for all teams, and the time limit is the same, the trial results are comparable.

Trial Time Limits

- Not intended to make it a race.
- There is enough time for a capable robot to demonstrate a statistically significant number of task repetitions.
- This provides a measure of reliability that the task can be performed.
- Trials begin every 30 minutes (at 00 and 30 past the hour):

Remote Control

- Operators remotely control their robots while out of sight of the lane.
- All situational awareness must come through the operator interface.
- No talking to the operator is allowed during the trial except to reset a robot or for any other safety issue.

Autonomy

- Autonomous behaviors are encouraged because real-world communications between the robot and the remote operator is often unreliable or intermittent with radio drop-out zones.
- Successful autonomous traverses require NO INTERACTION WITH THE OPERATOR INTERFACE between end zones within each lane. The operator may only set a end GOAL POINT at the far end zone, no waypoints.
- Autonomous lane traverses score a $4 x$ multiplier because autonomy is often slower than teleoperation.
- The operator may take over teleoperative control in the lane end zones to set the next waypoint downrange or at any time during the traverse to
 finish the lane for a teleop score.

Radio Comms Degradation

- Happens inside intact and partially collapsed structures.
- Assistive and autonomous behaviors are needed to improve the effectiveness and reliability of robots being operated from safe locations outside the structure.
- NEW: We provide scoring incentives (2x multiplier) to encourage teleoperated robots to work with intermittent and unpredictable communications.

Tethers

- Are always allowed because they can provide secure communications and ongoing power to drive the robot or recharge batteries over time.
- They must be managed from the lane door by a helper, not guided over the walls.
- Tethers can glow in the dark with arrows identifying the route the robot took. Tethers should be spooled on the robot and act as a winch when necessary to help descend stairs then climb back up if necessary.

Linear Dexterity Tasks on Slopes, Omni Dexterity Tasks in Flat End Zones

Could be in any Terrain Lane

ANGLED/MAGNETIZED

ANGLED BEAM HANGS FROM THE CROSSBAR AND IS AFFIXED TO THE SIDE WALL WITH A MAGNET AND WASHER SO IT CAN RELEASE IF BUMPED.

MAPPING FIDUCIALS

 Rescue

Arena Layout

TERRAINS (TER) Either "FLAT" or "SLOPED" 15degrees

Continuous Ramps (FLAT)

Crossing "Pinwheel" Ramps (15deg slopes)
K-Rails (15deg slopes)
Sand \& Gravel (15deg slopes)
OBSTACLES (OBS) All have adjustable features to increase difficulty Incline \& Center (15deg plane, variable door widths top/bottom) Pallet/Pipe Hurdles (10/20/30cm elevations with pipes)

Stairs (35/40/45deg, 20cm Risers, 2/4 debris)
Doors (Push/Pull, 240cm "room" or 120cm "hallway" access)

EXPORATION (EXP) All emphasize autonomy and mapping

Avoid Holes (elevated paths, objects to identify)
Labyrinth (various terrains, mapping fiducials, objects to identify)

Prelims: 10 Concurrent Lanes (Enter and Exit Through the Same Doors)

Semis: 3 Concurrent Sequences (Enter and Exit Through the Same Doors)

Approach an Urban Dwelling

Sequence Lanes 1-2-3 (in any order):

- Obstacles: Traverse and Center
- Terrain: Crossing Ramps
- Terrain: Sand \& Gravel

Semis: 3 Concurrent Sequences (Enter and Exit Through the Same Doors)

Approach a Country Dwelling

Sequence Lanes 4-5-6 (in any order):

- Terrain: Continuous Ramps
- Terrain: K-Rails
- Obstacles: Pallets with Pipes

Arena Overview

Semis: 3 Concurrent Sequences (Enter and Exit Through the Same Doors)

Search a Dwelling and Vehicle for Victims

Sequence Lanes 7-8-9-10 (in any order):

- Exploration: Avoid Holes
- Obstacles: Doors
- Exploration: Labyrinth
- Obstacles: Stairs
 Arena Overview

Semis： 3 Concurrent Sequences（Enter and Exit Through the Same Doors）

Tech Challenge Area（Optional）

10 Test Lanes

Obstacle: Traverse \& Center

Rescue

- Doorways at top and bottom of 15 degree slope set to
ROBOT WIDTH + 10cm (4in)
- Mapping fiducial or post prevents riding the wall.
- Optional center task is to be avoided, could be dexterity location.

Test Lanes
Terrain: Continuous Ramps

15 DEGREE CONTINUOUS RAMPS IN FLAT CONFIGURAITON

OPTION:
15 DEGREE CONTINUOUS RAMPS
ON 15 DEGREE SLOPES
(SO 30 DEGREES IN PLACES)

Terrain: Sand and Gravel

Test Lanes
Terrain: K-Rails

Obstacle: Pallet Hurdles with Pipes

Version: 2024B
European pallets appear extra thick (14.4 cm) so maybe it is time for hurdles to increase their difficulty from 10 cm and 20 cm steps.

2022 Lane Design

(10cm \& 20cm elevations)

2023-24 Lane Design

($15 \mathrm{~cm} \& 30 \mathrm{~cm}$ elevations)

TYPICAL PALLETS IN EUROPE 120 M X 80CM

Europaletten - Alle Abmessungen in mm

NOTE: Front hallway basically conforms to the standard test method. Easy for everybody to fabricate and practice coordinated flipper control as an elemental test at incremental elevations.

- Upper landing is now CONFINED at $1.2 \mathrm{~m} \times 2.4 \mathrm{~m}$ ($4 \mathrm{ft} \times 8 \mathrm{ft}$)
- Starts with no DEBRIS in Preliminaries and adds more difficulty in Semis and Finals
- Needs a belay over the top for robot safety on more difficult settings

SLIDING STAIR TREADS SPACED VERTICALLY 20CM (8IN)

UPPER LANDING
IS A "HALLWAY"
$1.2 \times 2.4 \mathrm{M}(4 \times 8 \mathrm{FT})$

TEAM CHOOSES
1, 2, or 3 ANGLED OBSTACLES FOR EXTRA NEGOTIATE POINTS

Obstacle: Doors (Push/Pull)

- BOTH sides any door can be contained with "L walls" to adjust the approach paths
- "ROOM" is $2.4 \mathrm{~m}(8 \mathrm{ft})$ square, which is easier in the Prelims
- "HALLWAY" is $1.2 \mathrm{~m}(4 \mathrm{ft}) \times 2.4 \mathrm{~m}(8 \mathrm{ft})$, which is harder in the Semis and Finals
- Reverse the direction for PUSH vs PULL tasks

Exploration: Avoid Holes

- Autonomous and teleop robots must avoid negative/positive obstacles while exploring and mapping the exterior of the Labyrinth and surrounding scene. Falling off the driving surface is a reset (2 min. penalty).
- Autonomous robot operators may give a rough estimate of the end goal location relative to the start. Successful autonomous traverses get the $4 x$ multiplier on the Mapping score.
- Mapping score from 0-10 minutes (traverse - score - clear the map - repeat). Dexterity tasks are available to score from 10-20 minutes.
- Self standing fiducials and shared fiducials with the interior of the Labyrinth (different test), can facilitate map merging.

Test Lanes

Exploration: Labyrinth/Maze

Scoring Mobility

(During 0-10 Minutes of Trial)

- Mobility scoring is based on driving continuous end-to-end traverses in the lane. The robot must start and end completely within the squares.
- Driving teleoperatively scores 1 point for completion in each direction.
- Driving autonomously (hands off the interface) scores 4 points for successful completion in each direction. The remote operator may take over control at any time to finish a traverse teleoperatively for 1 point and try again autonomously on the next repetition. Teleoperation is allowed in both end zones to set waypoints, evaluate maps, etc.
- Single Lane Missions perform up to 10 end-to-end traverses in the first 10 minutes of the trial. If finished early, use the elapsed time as a measure of efficiency. Wait for the Dexterity time to start.
- Multiple Lane Missions perform a sequence of end-to-end traverses in each lane by entering and exiting from the same doorway. Teams may choose the order of lanes based on risk, but may need to drive further to
 complete all. No repeated lanes are allowed until all lanes are completed.

MOBILITY: Drive TELEOPERATIVELY or AUTONOMOUSLY (no hands on interface) end-to-end in the lane.

CIRCLE A SINGLE LANE IN THE LIST ABOVE OR WRITE SEQUENCE OF LANES IN ORDER		TELEOP	COMMS	AUTO	NEGOTIATE			
			x2	x4	1	2	3	4
1		1	2	4	N	N	N	N
2	RETURN UP RANGE TO START POINT	1	2	4	N	N	N	N
3		1	2	4	N	N	N	N
4	RETURN UP RANGE TO START POINT	1	2	4	N	N	N	N
5		1	2	4	N	N	N	N
6	RETURN UP RANGE TO START POINT	1	2	4	N	N	N	N
7		1	2	4	N	N	N	N
8	RETURN UP RANGE TO START POINT	1	2	4	N	N	N	N
9		1	2	4	N	N	N	N
	RETURN UP RANGE TO START POINT	1	2	4	N	N	N	N

Example: Teleoperative Robot in Single Lane Mission

MOBILITY: Drive TELEOPERATIVELY or AUTONOMOUSLY (no hands on interface) end-to-end in the lane.

CIRCLE A SINGLE LANE IN THE LIST ABOVE OR WRITE SEQUENCE OF LANES IN ORDER		TELEOP	$\underset{\times 2}{\text { COMMS }}$	$\underset{\times 4}{\text { AUTO }}$	$\begin{array}{ccc} & \text { NEGOTIATE } & \\ 1 & 2 & 3 \end{array}$	ELAPSED TIME $9: 35$ MM : SS
1	continuous Ramps	1	2	4	(N)N N	
2	RETURN UP RANGE TO START POINT	1	2	4	$N \sim N$	
3	Continuous Ramps	(1)	2	4	$N \quad N \quad N \quad N$	OP
4	RETURN UP RANGE TO START POINT	1	2	4	(N) N N	
5	Continuous Ramps	1	2	4	(N N N	$0 \sim$
6	RETURN UP RANGE TO START POINT	(1)	2	4	$\mathrm{N} \quad \mathrm{N} \quad \mathrm{N} \quad \mathrm{N}$	
7	continuous Ramps	1	2	4	(N) N N	- AUTO
8	RETURN UP RANGE TO START POINT	1	2	4	(N)NN	
9	continuous Ramps	1	2	4	$N \mathrm{~N} N \mathrm{~N}$	
	RETURN UP RANGE TO START POINT	1	2	4	(NN N	points

Proctors Circle the Scored Points as They Happen

Example: Autonomous Robot in Single Lane Mission

MOBILITY: Drive TELEOPERATIVELY or AUTONOMOUSLY (no hands on interface) end-to-end in the lane.

CIRCLE A SINGLE LANE IN THE LIST ABOVE OR WRITE SEQUENCE OF LANES IN ORDER		TELEOP	$\underset{\times 2}{\text { COMMS }}$	AUTO x4	NEGOTIATE				ELAPSED TIME 9:35 MM : SS	
		1			2	3	4			
1	continuous Ramps		1	2	(4)	N	N	N		N
2	RETURN UP RANGE TO START POINT	1	2	(4)	N	N	N	N		
3	continuous Ramps	1	2	(4)	N	N	N	N	EOP	
4	RETURN UP RANGE TO START POINT	1	2	(4)	N	N	N	N		
5	continuous Ramps	1	(2)	4	N	N	N	N		
6	RETURN UP RANGE TO START POINT	1	2	(4)	N	N	N	N	Points	
7	continuous Ramps	1	2	(4)	N	N	N	N	AUTO	
8	RETURN UP RANGE TO START POINT	1	(2)	4	N	N	N	N		
9	Continuous Ramps	1	2	(4)	N	N	N	N		
	RETURN UP RANGE TO START POINT	1	2	(4)	N	N	N	N	- points	

Example: Autonomous Robot in Multiple Lane Mission

MOBILITY: Drive TELEOPERATIVELY or AUTONOMOUSLY (no hands on interface) end-to-end in the lane.

CIRCLE A SINGLE LANE IN THE LIST ABOVE OR WRITE SEQUENCE OF LANES IN ORDER		TELEOP	COMMS	AUTO	NEGOTIATE				ELAPSED TIME
			$\times 2$	x4	1	2	3	4	
1	Continuous Ramps	1	2	(4)	N	N	N	N	$10: 00$
2	RETURN UP RANGE TO START POINT	1	2	(4)	N	N	N	N	- MM:SS
3	K-Rails	(1)	2	4	N	N	N	N	$\left[\begin{array}{l} \text { TELEOP } \\ 10 \end{array}\right.$
4	RETURN UP RANGE TO START POINT	(1)	2	4	N	N	N	N	
5	Pallets and Pipes	1	(2)	4	N	N	N	N	
6	RETURN UP RANGE TO START POINT	1	(2)	4	N	N	N	N	-
7	Pallets and Pipes	1	(2)	4	N	N	N	N	AUTO
8	RETURN UP RANGE TO START POINT	1	(2)	4	N	N	N	N	
9	Continuous Ramps	1	2	(4)	N	N	N	N	
	RETURN UP RANGE TO START POINT	1	2			N	N	iv	

Embedded Dexterity Tests

(During 10-20 Minutes of Trial)

- The dexterity tasks inside each zig-zag lane are intended to encourage multi-joint manipulators with coordinated control to compensate for unknown chassis orientations and difficulties of repositioning on difficult terrains.
- After completing the designated Mobility repetitions or when Mobility time expires, perform the Dexterity tasks starting anywhere and in any order. No repeated tasks are allowed.
- Linear tasks encourage straight line gripper/tool paths and reach.
- Omni tasks encourage dexterous gripper/tool orientations. OMNI tasks are harder so score double compared to similar LINEAR tasks.
- No additional multiplier for autonomous driving because it is interrupted by the dexterity tasks.
- Operational tasks are all OMNIS and involve friction, force, or more precision so score even more, but are not available until the Finals.

Sensor Crate (White) Prelims/Semis/Finals

- Visual, Proximity, Hazmat, Motion, Thermal

Inspect Tasks (Green) Prelims/Semis/Finals

- Linear - 1 point each
- Omni-2 point each

Touch Tasks (Blue) - Prelims Only (easier, use your own tool)

- Linear - 2 point each
- Omni - 4 point each

Insert Tasks (Blue) - Semis (add the grasp shaft tool in center)

- Linear - 3 point each
- Omni - 6 point each

Operational Tasks (Black) - Finals only due to force \& friction

- Omni - 10 point each

VICTIM CRATE PLACED FLAT ON GROUND WITH OPEN TOP

THERMAL IMAGE ACUITY Hand warmer with 3D printed Concentric Cs

AUDIO ACUITY MP3 Player with alpha-numeric sequence to identify (2-way)

MOTION DETECTION Rotating jewelry display with Concentric Cs (AUTO ONLY)

PARTIAL IMAGE RECOGNITION Random hazmat labels from a known set. (AUTO ONLY)

PROXIMITY SAMPLING Magnet to detect with magnetometer on tool tip

VISUAL/COLOR ACUITY Stationary Concentric Cs or QR Code (AUTO ONLY)

Embedded Dexterity Tasks

CLASSIFICATION TASKS - INSPECT OBJECTS (Green)

Available in All Rounds

LINEAR - 1 point for each alignment
OMNI - 2 points for each alignment

ALIGNED
THE INNER EDGE OF LARGEST RING MUST BE COMPLETELY VISIBLE

CLASSIFICATION TASK - TOUCH or INSERT TOOLS (Blue)

TOUCH = Sustained contact of shaft tip to hole interior in any orientation Easier - Only in Preliminaries
INSERT = Perpendicular penetration of shaft into hole at least 25 mm (1in) Harder - In Semis and Finals

LINEAR

TOUCH = 2 points each
INSERT = 3 points each

90 cm (36 in)

30 cm (12 in)

Threaded Inserts:
$8 \mathrm{~mm}(5 / 16 \mathrm{in})$ diameter hole

Steel Shaft with Handle:
6 mm (1/4 in) diameter shaft at least 25 mm (1 in) long

Small Round Abrasive Flap Wheel Sanders Grasp Object: 25 mm (1 in) diam high friction cylinder Shaft: $6 \mathrm{~mm}(1 / 4 \mathrm{in})$ diameter, at least $25 \mathrm{~mm}(1 \mathrm{in})$ long

OMNI
TOUCH = 4 points each

CLASSIFICATION TASK－TOUCH or INSERT TOOLS（Blue）

TOUCH＝Sustained contact of shaft tip to hole interior in any orientation Easier－Only in Preliminaries
INSERT＝Perpendicular penetration of shaft into hole at least 25 mm （1in）Harder－In Semis and Finals

One of the standard dexterity tests is＂Touch＂tools which is conducted in every terrain．See the blue apparatuses shown in both Linear（easier）and Omnidirectional（harder）configurations．

Embedded Dexterity Tasks

OPERATIONAL TASK－PRESS BUTTONS（Black）

Harder due to force，friction，or precision．Omni configuration only． 10 points per task．

Embedded Dexterity Tasks

OPERATIONAL TASK - TURN VALVES (Black)

ersion: 2024B
Harder due to force, friction, or precisions. Omni configuration only. 10 points per task.

DEXTERITY: Perform the available SETS OF TASKS starting anywhere and in any order. No repeated tasks.

SENSOR TASKS		VISUAL	PROXIMITY	MOTION	HAZMAT	THERMAL
VICTIM CRATE	(ALWAYS)	1	2	3	4	5
LINEAR TASKS		L $90{ }^{\circ}$	L 45 ${ }^{\circ}$	CENTER	R 45°	R 90°
INSPECT	(ALWAYS)	1	1	1	1	1
TOUCH	(PRELMS)	2	2	2	2	2
INSERT	(SEMIS, FINALS)	3	3	3	3	3

OMNI TASKS		L BOT	L TOP	CENTER	R TOP	R BOT
INSPECT	(ALWAYS)	2	2	2	2	2
TOUCH	(PRELMS)	4	4	4	4	4
INSERT	(SEMIS, FINALS)	6	6	6	6	6
PUSH E-STOPS	(FINALS)	10	10	10	10	10
CLOSE VALVES	(FINALS)	10	10	10	10	10
INSERT KEYS	(FINALS)	10	10	10	10	10

Mapping Tests

Labyrinth and Maze

Embedded Mapping Tasks

Generate 2－D Maps at 1 m （3ft）and $2 \mathrm{~m}(6 \mathrm{ft})$ to be Evaluated

Generate 2-D Maps at $1 \mathrm{~m}(3 \mathrm{ft})$ and $2 \mathrm{~m}(6 \mathrm{ft})$ to be Evaluated

Exploration and Mapping tasks can be conducted autonomously or by a remote operator. We use an enclosed Labyrinth with variable terrains and a tarp cover to dim the lighting. The robot needs to get through it to identify all the embedded features and place them correctly on an accurate map.

Proctors Circle the Scored Points as They Happen

- Exploration/Mapping tasks are scored based on the accuracy and quality of the maps produced within a single lane or sequence of lanes.
- If using 3D scanners, produce two maps at two different elevations:
- low is 1 m (3ft) and
- high is 2 m (6 ft).
- The scored features are split between both map elevations. They include half-round mapping fiducials, QR codes as search gaze tasks, and other objects of interest to identify from a known set.

MAPPING: Display 3-D scanned walls and features on TWO DIFFERENT 2-D MAPS at elevations of 1 m (3ft) and 2 m (6 ft).

QUALITY AND ACCURACY	MAP SET 1	MAP SET 2	MAP SET 3	MAP SET 4
FIDUCIALS (COVERAGE)	$1 \begin{array}{lllll}1 & 2 & 3 & 5\end{array}$	12345	122345	$\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
QR CODES (SEARCH GAZE)	122345	122345	12345	$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
OBJECTS (LEXICON)	12345	12345	12345	122345

Scoring Single or Multi-Lane Missions

Scoring Single or Multi-Lane Missions

Proctors Fill In the Header and Circle Scored Points as They Happen

Proctors Fill In the Header and Circle Scored Points as They Happen

Single Lane Missions

Prelims (30 minute rotations, 20 minute trials)

- There are 10 concurrent lanes with operator stations.
- Each test lane is conducted individually to capture up to 10 repetitions from end-to-end to refine their systems and tactics for the challenges in each test lane.
- Teams schedule their own test plan each day to balance their objectives with related risks (or the organizers make a schedule).
- Teams must try every lane in the Preliminaries but several scores can be dropped from the totals.
- Each team provides a "Proctor" to score and attest to the results of other team trials. This ensures all teams go home with experience conducting objective evaluations for their ongoing development.

Proctors Fill In the Header and Circle Scored Points as They Happen

Multiple Lane Missions

Semis (30 minute rotations, 20 minute trials)

- These sequences challenge teams to optimize their systems across different capabilities.
- There are 3 concurrent lane sequences with different operational objectives.
- The lanes are conducted in any order but no repeats are allowed until all lanes are completed.

Combined Scenario Missions

Finals Challenge the Best Robots to Their Limits

- Challenge teams like an operational deployment with various phases.
- The best few teams traverse ALL the available test lanes. Teams may choose their own order to minimize risks.
- The time limit should be set to enable the best teams to finish the set of lanes, perform one dexterity task within each, and map their path for a total score.
 neew

New Tech Challenge

Motivation

The new Technology Challenge provides teams with an opportunity to showcase advanced capabilities in RoboCup Rescue. It encompasses a range of tasks that
require supervised autonomy under conditions of severe radio degradation.
In addition to the predefined tasks, the challenge offers an open field where research teams can demonstrate new capabilities relevant to rescue robotics within their respective fields of study. Examples include alleviating operators' stress in repetitive tasks or introducing assistive functions.
The team that performs the best in this challenge will be awarded the Technology Challenge Certificate. The score obtained in this challenge does not contribute to the overall championship or other "best in class" certificates.

Scenario

The objective is to deploy a smart robot into an apartment and enable it to autonomously search for victims with supervision from the operator.

Four Challenging Tasks

MOBILTY: Stair Traversal (25 pts) 1

 Go up and down a set of stairs
Align with the stairs (5 pts)

Go up the stairs and reach the top area (5 pts) Rotate robot more than 90°, then align again with stairs (5 pts)
Go down the stairs and reach the bottom area (10 pts) code

Drive into area in front of cabinet door (5 pts) Detect handle (5 pts)
Open door at least 90° (10 pts) Read QR code which is located inside the cabinet automatically (5 pts)

- Traverse stairs, open a cabinet door, find and map a victim.
- Open Stage: Teams are encouraged to showcase their own capabilities and demonstrate new technologies relevant to the field.

OPEN STAGE (25 pts)

Environment, Setup and Scoring

. The robot must traverse uneven terrain, with $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ beams on the ground.

- All tasks must be performed with high radio degradation (bandwidth $<1 \mathrm{Mb} / \mathrm{s}$), but full connectivity is ensured within the $1.2 \mathrm{~m} \times 1.2 \mathrm{~m}$ start zone.
- Tasks can be performed with human-in-the-loop supervision, emphasizing supervised autonomy.
- All 4 tasks must be performed in a single 30 minutes mission: 5 minutes to set up, 20 minutes of operation, 5 minutes to exit.
- The maximum score for the challenge is 100 points, with each task worth 25 points.
- Each task can be skipped. The order of the task execution can be determined by the operator.
- Detailed scoring sheets will be used to evaluate the fixed tasks, while technical experts will assign points for the Open Stage demonstration.

MOBILITY: Stair Traversal (25 pts) 1 Go up and down a set of stairs

Align with the stairs (5 pts)
Go up the stairs and reach the top area (5 pts) Rotate robot more than 90°, then align again with stairs (5 pts)
Go down the stairs and reach the bottom area (10 pts)

- Location in a 3D map (5 pts)

Every team get to comprehensively evaluate their robot. Teams seeking to accumulate scores can win awards to recognize their accomplishments.

Scores are normalized relative to the best score in each lane or sequence so the results can be compared with other lanes that are easier/harder for teams in general.

- Best-In-Class Awards are given for teams that demonstrate the most capable and reliable robots within a class of tests: Mobility, Dexterity, and Exploration/Mapping. The trials are captured during the Preliminaries when all teams are involved.
- 1st, 2nd, and 3rd Place Awards are given to teams that combine all three categories of capabilities to demonstrate the best performance across the entire arena. These teams perform the most challenging mission sequences on the final day.
- Certificate Awards recognize important contributions across the league such as the most intuitive operator interface or particularly effective design functionalities and the Tech Challenge.

